• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:毋亭,吴启航,曹文琦,陈婧妍,刘绍贵,于东升,史学正,邢世和,张黎明.DEM分辨率对苏北地区耕地土壤有机碳制图精度的影响研究[J].中国农业资源与区划,2022,43(7):262~272
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 385次   下载 360 本文二维码信息
码上扫一扫!
分享到: 微信 更多
DEM分辨率对苏北地区耕地土壤有机碳制图精度的影响研究
毋亭1,2,吴启航1,2,曹文琦1,2,陈婧妍1,2,刘绍贵3,于东升4,史学正4,邢世和1,2,张黎明2
1.福建农林大学资源与环境学院,福州 350002;2.土壤生态系统健康与调控福建省高校重点实验室,福建福州 350002;3.扬州市农业环境监测站,江苏扬州 225603;4.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,江苏南京 210008
摘要:
目的 数字高程模型(Digital Elevation Model, DEM)的分辨率大小决定区域地貌形态特征的表达程度,但目前DEM对于局部地形变异大的平原地区土壤有机碳制图精度的影响尚不明确。方法 文章以江苏北部耕地区域为例,利用随机森林算法,建立不同分辨率DEM下的地形、气候、植被、土壤、成土母质与土壤有机碳之间的关系模型,分析DEM分辨率对局部地形变异大的平原区土壤有机碳制图精度的影响程度。结果 (1)不同DEM分辨率下,地形、气候、植被、土壤与成土母质5类因子对土壤有机碳含量的影响程度依次降低;(2)当DEM分辨率在大于150 m的范围内变化时,环境特征因DEM的“概化”而逐步缺失细节信息,从而导致土壤有机碳含量预测精度随分辨率的增加而降低;(3)地形是苏北耕地区域土壤有机碳空间分布差异的最重要影响因子。结论 DEM分辨率在60-90 m范围内时,整体平坦但局部地形变异程度较大的苏北地区土壤有机碳制图效果最佳该研究为进一步提高我国相似地貌类型区土壤有机碳制图精度提供了理论依据。
关键词:  土壤有机碳含量  随机森林  地形  DEM分辨率  数字土壤制图
DOI:10.7621/cjarrp.1005-9121.20220726
分类号:S159.2
基金项目:福建省自然基金“多制图尺度下福建省耕地土壤有机碳不确定性研究”(2020J05027);国家自然科学基金“亚热带水田和旱地土壤有机碳模拟的尺度效应差异机理研究”(41971050)
RESEARCH ON EFFECT OF DEM RESOLUTION ON THE DIGITAL SOIL ORGANIC CARBON MAPPING FOR CULTIVATED AREA IN THE NORTH OF JIANGSU PROVINCE
Wu Ting1,2, Wu Qihang1,2, Cao Wenqi1,2, Chen Jingyan1,2, Liu Shaogui3, Yu Dongsheng4, Shi Xuezheng4, Xing Shihe1,2, Zhang Liming2
1.College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;2.Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fuzhou 350002, Fujian, China;3.Yangzhou Agriculture Environment Monitoring Station, Yangzhou 225603, Jiangsu, China;4.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
Abstract:
The resolution of Digital Elevation model(DEM) plays a critical role in deciding to which level the detail of geomorphological variation in space of one region could be expressed, thus it has an essential impact on digital soil organic carbon mapping for mountainous area, and yet which is not very clear for plain area. To figure out that, digital soil organic carbon mapping for the plain area in north of Jiangsu was performed based on multiple-resolution DEMs by using Random Forest algorithm. Specifically, the relationship between soil organic carbon content and environmental factors of five type, including terrain, climate, organism, soil and parent material, was modeled to predict cultivated soil organic carbon content of plain area in north of Jiangsu at multiple resolutions, aiming to explore how DEM resolutions affect the soil organic carbon mapping for areas characterized by marked topographic variation at local scale. The results were showed as follows. (1) Degree to which influencing factors of five type affect soil organic carbon content decreased in the sequence of terrain, climate, organism, soil and parent material at different DEM resolutions. (2) While DEM resolution varied at the range of greater than 150 m, accuracy of soil organic carbon content prediction went down with increased DEM resolution, which could be primarily attributed to the fact that environmental features progressively lost details due to DEM aggregation. (3) Terrain was demonstrated to be the most dominant factor that had influence on spatial variation of soil organic carbon in the study area. In conclusion, DEM resolution between 60 and 90 meters are optimal for the soil organic carbon mapping in Subei area where is globally flat whereas varies significantly in local terrain. This research may provide theoretical basis for the attempt to increase precision of soil organic carbon mapping for the area with the similar geomorphology to this studied area.
Key words:  soil organic carbon content  Random Forest  terrain  DEM resolution  digital soil mapping
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号