• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:丁娅萍,陈仲新.基于最小距离法的RADARSAT-2遥感数据旱地作物识别[J].中国农业资源与区划,2014,35(6):79~84
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3046次   下载 1237 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于最小距离法的RADARSAT-2遥感数据旱地作物识别
丁娅萍, 陈仲新
农业部农业信息技术重点实验室,北京100081/中国农业科学院农业资源与农业区划研究所,北京100081
摘要:
利用雷达遥感技术进行作物识别是当前作物遥感监测的研究热点之一,但利用雷达遥感技术进行旱地作物识别的相关研究较少,该文以RADARSAT 2雷达遥感数据对两种旱地作物玉米和棉花进行识别。以河北省枣强县为研究区,对其区域内的玉米和棉花进行识别。首先分析了与卫星过顶时刻同步采集的作物参数与后向散射系数之间的相关性发现,在植株高度、生物量、作物含水量、叶面积指数这四个作物参数中,植株高度与后向散射系数的相关性最大,其次是作物含水量;同时,通过最小距离法应用多时相、多极化雷达遥感数据进行作物识别,其精度可达到85%,通过与资源三号光学遥感数据结合,其作物识别精度提高到了93%。研究结果表明,雷达遥感数据应用于旱地作物识别是可行的,雷达遥感数据与光学遥感数据的结合能提高旱地作物识别的精度。该研究为应用雷达遥感数据进行旱地作物识别提供了参考。
关键词:  玉米 棉花 识别 雷达 遥感 最小距离法
DOI:10.7621/cjarrp.1005-9121.20140613
分类号:
基金项目:该研究得到农业部948项目课题“ 农业遥感监测系统关键技术引进”(2011-G6)、国家自然科学基金面上项目“区域作物生长模拟遥感数据同化的不确定性研究”(项目批准号:41371396)、高分遥感农业应用项目的资助。
DRY LAND CROP CLASSIFICATION using MINIMUM DISTANCE METHOD BASED ON RADARSAT-2 DATA
Ding Yaping, Chen Zhongxin
Key Laboratory of Agri informatics,Ministry of Agriculture,Beijing 100081,China/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China
Abstract:
Identification of crop types from SAR remote sensing technology is a hot topic in crop remote sensing field, but there are a few studies on using SAR remote sensing technology to identify dryland crops. The aim of this study was to investigate the usability of RASARSAT-2 SAR data in the two dryland crops including maize and cotton. The study area located in Zaoqiang, Hebei province. At first, the correlation analysis of radar backscattering coefficient and crop parameters that were collected timely synchronization with the satellite images time was studied, the results displayed that the following four crop parameters including crop height, biomass, crop water content, leaf area index, plant height were mostly correlation with backscatter coefficients, followed by the crop water content. Then, the dryland crops were classified using the minimum distance method based on the multi-temporal and multi-polarization SAR data, the overall accuracy was 85%. Combined with the ZY-3 hi-resolution optical remote sensing imagery, the overall accuracy for dryland crop classification was 93%. The results showed that the identification of dryland crop by SAR remote sensing data was feasible. The combination of SAR remote sensing data and optical remote sensing data can improve the accuracy of the identification of dryland crops. The results of this study can provide useful information for the related research.
Key words:  maize  cotton  classification  SAR  remote sensing
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号