• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:吐尔逊·买买提,丁为民,Muhammad Hassan.基于灰色神经网络和MIV的农机总动力影响因素研究[J].中国农业资源与区划,2017,38(11):24~30
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1053次   下载 605 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于灰色神经网络和MIV的农机总动力影响因素研究
吐尔逊·买买提1, 丁为民2,3, Muhammad Hassan1
1.南京农业大学工学院,江苏南京 210031;2.1.南京农业大学工学院,江苏南京 210031;3.2.新疆农业大学机械交通学院,乌鲁木齐 830052
摘要:
[目的]以顷均农业机械总动力及影响因素为研究对象,量化各因素对顷均总动力的影响强度,进而为定量分析顷均农机总动力影响因素提供途径。[方法]以新疆1990~2014年顷均农业机械总动力及其影响因素作为数据源,建立关系数据模型。构建嵌入式灰色神经网络(Embed grey neural network,EGNN)模型,并与EGNN与平均影响值(Mean impact value,MIV)方法相结合,建立了EGNN-MIV影响因素重要度计算模型,并对新疆25年顷均农机总动力的影响因素MIV进行测度。[结果]新疆1990~2014年顷均农机总动力受各种影响因素的交叉影响。各影响因素标准化后的MIV分别为0.70、0.39、0.39、0.46、0.20、0.50、0.90、0.74。顷均农机总动力影响最大的前3个因素分别为:劳均土地面积、最大种植面积农作物比重以及耕地均顷GDP。对顷均农机总动力的影响最小的因素为农业比较劳动生产率。[结论]建立的EGNN-MIV模型在量化模型输入对输出的影响程度方面有效和可行。顷均农机总动力主要受土地面积分布、农作物种植结构和均顷GDP等因素的显著影响。为定量分析顷均农业机械总动力等时间序列的影响因素提供了思路和方法,同时为农机管理部门提供决策参考。
关键词:  顷均农机总动力 影响因素 影响强度 神经网络 平均影响值
DOI:10.7621/cjarrp.1005-9121.20171104
分类号:
基金项目:国家自然科学基金资助项目“基于工况自识别的拖拉机排放特性研究”(51768071)
STUDY OF IMPACT FACTOR FOR AGRICULTURAL MACHINERY TOTAL POWER BASED ON GREY NEURAL NETWORK AND MIV
Tursun Mamat1, Ding Weimin2,3, Muhammad Hassan1
1.College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China;2.1. College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China;3.2. School of Mechanical and Traffic Engineering, Xinjiang Agricultural University, Urumqi 830052, China
Abstract:
Taking the total power of agricultural machinery for average hectare(TPAMAH) and its influencing factors as the research object, the influence strength of each factor on TPAMAH is quantified, which provided a way to quantitatively analyze the influencing factors of TPAMAH.During the farm mechanization in Xinjiang in the last decade, each impact factor of TPAMAH has different impact in all parts of Xinjiang from 1990~2014. The TPAMAH and its impact factor, the influence intensity of all factors were quantified, and then the way of quantitative analysis of the influencing factors of the total power of agricultural machinery was provided. The embedded grey neural network (EGNN) forecasting model and the EGNN-MIV (mean impact factor) model were used for measuring MIV of each impact factor of TPAMAH. Then MIV was calculated by using EGNN-MIV approach. According to minimum mean square error of the EGNN-MIV model, the optimal MIV was determined. The results showed that TPAMAH was cross influenced by various factors in 1990~2014. Standardization MIV of each impact factor for TPAMAH was 0.70, 0.39, 0.39, 0.46, 0.20, 0.50, 0.90 and 0.74. The first 3 highest impact factors were land area per capita, the proportion of the largest planting area of crops, and GDP of mean area. The agricultural comparative labor productivity had the minimum MIV with standardization value of 0.20. It concluded that the established EGNN-MIV model was effective and feasible in quantifying the impact of model input on output. The results also indicated that the land area per capita, the proportion of the largest planting area of crops and GDP of mean area had significant impact on TPAMAH. This work can provide a reference for the quantification of the impact factors on the TPAMAH and the similar time series.
Key words:  total power of agricultural machinery for average hectare  impact factor  influencing intensity  neural network  mean impact value (MIV)
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号