• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:于利峰,乌兰吐雅,乌云德吉,许洪滔,包珺玮,任婷婷.基于纹理特征与MODIS NDVI时间序列的耕地面积提取研究[J].中国农业资源与区划,2018,39(11):169~177
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1109次   下载 435 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于纹理特征与MODIS NDVI时间序列的耕地面积提取研究
于利峰1,2, 乌兰吐雅1,2, 乌云德吉1,2, 许洪滔1,2, 包珺玮1,2, 任婷婷1,2
1.内蒙古自治区农牧业科学院农牧业经济与信息研究所,呼和浩特010031;2.内蒙古自治区农业遥感工程技术研究中心,呼和浩特 010031
摘要:
[目的]耕地是粮食安全的重要前提与保障,通过对MODIS时间序列数据的特征分析和提取,讨论了在大尺度条件下的耕地面积提取的可行方法,以期为当地合理利用耕地资源进行农业生产规划与布局提供参考。[方法]文章以呼伦贝尔市为研究区域,选择MOD13Q1为数据源,采用Savizky Golay 滤波方法对MODIS NDVI时间序列进行滤波处理,并分析各地物间的时间变化特征,最后结合纹理特征信息进行CART决策树分类的结果比较。[结果](1)MODIS NDVI时间序列能较好的区分不同的土地利用类型; (2)Savizky Golay滤波降噪能够明显提高分类精度; (3)纹理特征的加入进一步反映地物间差异性; (4)该方法的总体分类精度为8372%,Kappa系数为0789,其中耕地的提取准确度为8633%。[结论]纹理特征使数据像元间的灰度相关性更加丰富,并通过提高像元之间的差异改善结果的精度。该文结果为进一步利用MODIS数据进行土地利用信息与农业资源调查提取提出了新思路。
关键词:  粮食安全MODIS数据纹理特征Savizky Golay滤波决策树
DOI:
分类号:S127
基金项目:内蒙古自然科学基金项目“基于高光谱的大兴安岭北麓主要农作物识别遥感机理研究”(2016MS(LH)0301); 内蒙古农牧业科学院创新基金项目“基于北斗精准时空服务的大尺度农作物遥感识别方法研究”(2018CXJJN09); 内蒙古财政厅项目“内蒙古主要农作物长势、估产遥感监测预报服务平台建设”
STUDY ON EXTRACTION OF ARABLE LAND AREA BASED ON TEXTURE FEATURES AND MODIS NDVI TIME SERIES
Yu Lifeng1,2, Wulan Tuya1,2, Wuyun Deji1,2, Xu Hongtao1,2, Bao Junwei1,2, Ren Tingting1,2
1. Institute of Agricultural and Animal Husbandry Economy and Information, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China;2. Inner Mongolia Engineering and Technology Research Center for Agricultural Remote Sensing, Hohhot, 010031, China
Abstract:
Arable land is an essential condition and guarantee of food security. Basing on analysis and extract from characteristics of MODIS time series data, the feasible method of extracting the arable area under large scale condition is discussed, so as to provide reference for agricultural planning in utilization of arable area resources. Took Hulun Buir city as the research area, selected MOD13Q1 as data source, the study adopted Savizky Golay filtering method to filter the MODIS NDVI time series and the time variation characteristics between different objects were analyzed. Lastly, the results of CART decision tree classification with texture feature information were compared. By comparison, the different classification results show that(1)The MODIS NDVI time series data can better distinguish different land use types;(2)The Savizky Golay filter can improve the accuracy of classification;(3)The addition of texture features further reflects the differences between the landmark;(4)The overall classification accuracy of this method is 83.72%,kappa coefficient is 0.789, in which the extraction accuracy of cultivated land is 86.33%. Base on the results, texture features enrich the gray correlation between the data cells and improve the accuracy of the results by improving the difference between the pixels. The study provide a new idea for the further use of MODIS data for land use information and agricultural resources investigation and extraction.
Key words:  food security  MODIS data  texture features  Savizky Golay filtering  decision tree
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号