引用本文:黄青,杜彦彦.基于Sentinel-2卫星数据的埃及地区蝗灾监测[J].中国农业信息,2021,33(4):13-20
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 623次   下载 350 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于Sentinel-2卫星数据的埃及地区蝗灾监测
黄青,杜彦彦
中国农业科学院农业资源与农业区划研究所,北京100081
摘要:
【目的】 蝗灾突发性强,传统地面调查及生物学模型方法在时间、空间上不能满足精准防控的需求,且对历史数据依赖度高,利用高分辨率遥感数据监测蝗虫栖息生境的变化,从而实现蝗灾及时、快速监测,对治蝗防蝗具有重要意义。【方法】 文章以埃及南部蝗灾常发区为研究区,基于Sentinel-2卫星数据和地面气象数据、土地利用数据、行政区划数据等,监测植被生长季植被指数及植被覆盖度变化,实现埃及地区蝗虫发生地、发生程度的快速评估。【结果】 2019年6—7月,埃及南部植被覆盖区蝗灾受灾面积比例约为12%,中度及重度以上面积不超6%,整体受灾不严重。【结论】 不依赖于历史数据,从短期植被覆盖度变化入手,可以动态监测蝗灾变化,总体时效性较强、效果较好。
关键词:  蝗虫灾害(蝗灾)  Sentinel-2卫星数据  遥感  植被覆盖度  埃及
DOI:10.12105/j.issn.1672-0423.20210402
分类号:
基金项目:“中央级公益性科研院所基本科研业务费专项”(1610132020017)
Use of Sentinel-2 data to monitor locust plague in Egypt
Huang Qing, Du Yanyan
Institute of Agricultural Resources and Regional Planning of Chinese Academy of Agricultural Sciences,Beijing 100081,China
Abstract:
Purpose Locust plague is characteristics of sudden increase,traditional ground investigation and biological model cannot meet the needs of accurate prevention and control in time and space and have high dependence on historical data.The study used high resolution remote sensing data to monitor the change of locust habitat,and achieved the purpose of rapid monitoring,which is of great significance to locust control.Method Taking the locust plague area in southern Egypt as the research area,mainly based on Sentinel-2 satellite data,ground meteorological data,land use data and administrative zoning data,the rapid assessment of the occurrence and degree of locust plague was realized by monitoring the vegetation index and fractional vegetation coverage during vegetation growth season in Egypt.Result The Study showed that locusts affected about 12% vegetation zone in southern Egypt from June-July 2019.Conclusion Independent of the historical data,short-term fractional vegetation coverage changes can dynamically monitor the locust plague with good effect.
Key words:  Locust plague  Sentinel-2 satellite data  remote sensing  fractional vegetation coverage  Egypt