摘要: |
【目的】 为实现果园自然场景下智能农业机器人对桃花的准确、快速、有效检测。【方法】 文章采用相机获取桃花图片数据,通过LabelImg软件进行人工标记建立桃花目标识别的检测样本数据集,训练Darknet深度学习框架下的YOLO v4模型对桃花进行识别。【结果】 模型精度评估表明,YOLO v4模型的平均准确率MAP值(86%)比Faster R-CNN的MAP值(51%)高出35%。【结论】 YOLO v4与经典的算法相比,对各种自然环境下的桃花检测具有较好的实时性和鲁棒性,可为精准识别桃花提供重要参考价值,桃花精准识别为疏花疏果作业奠定了基础。 |
关键词: Darknet Faster R-CNN 桃花识别 目标检测 自然场景 |
DOI:10.12105/j.issn.1672-0423.20210603 |
分类号: |
基金项目:四川省科技计划项目“农业大数据资产管理及智能分析应用系统”(2021YFG0028) |
|
The peach blossom detection method based on darknet deep learning framework |
Guo Tao1, Guo Jia2, Li Zongnan1, Qiu Xia1, Wang Si1
|
1.Institute of Remote Sensing and Digital Agriculture,Sichuan Academy of Agricultural Sciences,Chengdu 610066,China;2.The Academy of Digital China(Fujian),Fu Jian Fuzhou 350116,China
|
Abstract: |
[Purpose] The purpose is realize the accurate,rapid and effective detection of peach blossom by intelligent agricultural robot in natural orchard scene.[Method] the camera is used to get peach blossom’s image data,and LabelImg software is used for manual marking to establish a detection sample dataset for peach blossom target identification,and YOLO v4 model under Darknet deep learning framework is trained to identify peach blossom.[Result] The accuracy evaluation of the model showed that the MAP accuracy of YOLO v4 model is 86%,35% higher than that of Faster R-CNN,which was 51%.[Conclusion] Compared with the traditional algorithm,the YOLO v4 algorithm has better real-time performance and robustness for peach blossom detection in various natural environments,which has important reference value for accurate peach blossom recognition identification which further lays a foundation for accurate peach blossom and fruit thinning. |
Key words: Darknet Faster R-CNN peach blossom identification target detection natural scene |