引用本文:徐丽君,张德祺,薛玮,聂莹莹,饶雄,杨桂霞,高兴发,徐树花,朱孟,付廷飞,乔正林,陈是元,张洪志.PHANTOM 4 RTK+大疆像控处理技术在燕麦长势模拟中的应用[J].中国农业信息,2022,34(4):38-47
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 470次   下载 214 本文二维码信息
码上扫一扫!
分享到: 微信 更多
PHANTOM 4 RTK+大疆像控处理技术在燕麦长势模拟中的应用
徐丽君1,张德祺2,薛玮1,3,聂莹莹1,饶雄4,杨桂霞1,高兴发4,徐树花4,朱孟4,付廷飞4,乔正林4,陈是元5,张洪志1
1.中国农业科学院农业资源与农业区划研究所/呼伦贝尔草原生态系统国家野外科学观测研究站,北京100081;2.沈阳市天骏厚德通信网络工程有限公司,辽宁沈阳110000;3.青岛农业大学资源与环境学院,山东青岛266109;4.云南省曲靖市会泽县农业局,曲靖654200;5.云南省曲靖市会泽县种子管理站,曲靖 654200
摘要:
【目的】 利用小型消费级无人机航拍获取地物影像,通过地物阴影、高度差、色差快速提取地物,进而获取地物结构信息。【方法】 文章选取云南省曲靖市会泽县的大桥乡为研究区域,针对冬闲田闲置土地资源、种植结构相对单一的区域展开试验,利用高分辨率无人机遥感影像对燕麦进行识别,同时结合超声波传感器数据估算地物高度,并与实际高度和无人机生成的传统测高方法得到的高度进行相关性分析,获取高精度、可靠性强的数据。【结果】 基于可见光燕麦的总体分类精度为91.46%,Kappa系数为0.857,在增加DSM数据后的分类总体精度为98.91%,Kappa系数为0.982。研究表明由无人机获取的代表燕麦冠层高度信息的DSM数据能够显著提升燕麦的识别效果。相对于传统无人机测高方法生成数字表面模型提取地物高度的方法,依赖于光谱和高程信息识别地物信息的方法在计算地物高度时,精度更高,识别结果更可靠。【结论】 该文提出的小型消费级无人机利用地物阴影计算燕麦高度的方法,改进了相机镜头光心地位和RTK天线中心点地位补偿作用,打通了RTK模块、飞控模块及相机云台模块之间的通讯,能够应用于实际准确获取影像地位信息,为无人机遥感快速、准确地获取地物高度信息提供了一种新的思路。
关键词:  燕麦  无人机  高度  快速  高精度
DOI:10.12105/j.issn.1672-0423.20220405
分类号:
基金项目:重点研发计划项目“乌蒙山区 燕麦提质增效与产品研发关键技术研究与示范”(202003AD150016);“云南省专家工作站”经费(202005AF150074);现代农业产业技术体系建设专项资金(Cars-34)
PHANTOM 4 RTK+ DJI image processing technology in oat growth simulation application
Xu Lijun1, Zhang Deqi2, Xue Wei1,3, Nie yingying1, Rao Xiong4, Yang Guixia1, Gao Xingfa4, Xu Shuhua4, Zhu Meng4, Fu Tingfei4, Qiao Zhenglin4, Chen Shiyuan5, Zhang Hongzhi1
1.Chinese Academy of Agricultural Sciences,Institute of Agricultural Resources and Regional Planning;Hulunbuir Grassland Ecosystem Research Station,Beijing 100081,China;2.Shenyang Tianjun Houde Communication Network Engineering Co.,Ltd,Shenyang Liaoning 110000,China;3.School of Resources and Environment,Qingdao Agricultural University,Qingdao Shandong 266000,China;4.Agriculture Bureau of Huize County,Qujing Yunan 654200;5.Agricultural Technology Extension Center of Huize County,Qujing Yunnan 654200,China
Abstract:
[Purpose] Using small consumer UAV aerial photography to acquire ground object image,quickly extract ground object through ground object shadow,height difference,and color difference,and then obtain ground object structure information.[Method] In this study,Huize County in the Wumeng Mountain area was selected as the research area,and the experiment was carried out in the area where the idle land resources of winter fallow field and the planting structure was relatively single. The high-resolution UAV remote sensing image was used to identify oat,and the height of the ground object was estimated combined with ultrasonic sensor data. The correlation analysis with the actual height and the height obtained by the traditional altimetry method generated by UAV is carried out to obtain high-precision and reliable data.[Result] The experimental results showed that the overall classification accuracy of oat-based on visible light was 91.46%,and the Kappa coefficient was 0.857. After adding DSM data,the overall classification accuracy was 98.91%,and the Kappa coefficient was 0.982. The study showed that the DSM data of oat canopy height obtained by UAV could significantly improve the recognition effect of oat. Compared with the traditional UAV altimetry method,which generates a digital surface model to extract ground object height,the ground object recognition method relying on spectral and elevation information has higher accuracy and more reliable recognition results in calculating ground object height.[Conclusion] In this study,the method of calculating oat height by ground object shadow for small consumer UAV improves the compensation effect of the optical center position of camera lens and RTK antenna center position,and the communication between RTK module,flight control module,and camera pall module can be applied to obtain image position information accurately in practice. It provides a new idea for UAV remote sensing to acquire ground object height information quickly and accurately.
Key words:  oats  UAV  height  fast  high precision