引用本文:郭鹏,赵阳,孙子皓,陈秀万.基于CARS-PLSR算法的土壤有效磷高光谱反演研究[J].中国农业信息,2023,35(1):55-66
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 335次   下载 320 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于CARS-PLSR算法的土壤有效磷高光谱反演研究
郭鹏1,2,赵阳1,2,孙子皓1,2,陈秀万1,2
1.北京大学遥感与地理信息系统研究所,北京 100871;2.北京大学地球观测与导航教育部工程研究中心(CEON),北京 100871
摘要:
【目的】 剔除土壤高光谱中包含的大量冗余和无效信息,探明土壤有效磷(SAP)的敏感波段,简化SAP的高光谱估算模型并提高模型的预测精度。【方法】 文章以四川省崇州市西河流域110个土壤样本为研究对象,利用ASD Fieldspec3地物光谱仪在室内条件下测定350~2 500 nm波段范围的土壤高光谱数据。对光谱数据进行预处理后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)优选的波长变量作为建模参数,运用偏最小二乘回归(PLSR)方法建立模型并比较其精度。【结果】 结果表明,标准正态变换预处理方法是SAP的最佳土壤光谱数据预处理方法。基于标准正态变换后的光谱数据,CARS、SPA算法可将预测SAP的关键波段变量分别压缩至54和13个,CARS-PLSR模型与SPA-PLSR模型相比,相关系数由0.894提高到0.945,均方根误差由5.73降低到3.56。【结论】 土壤高光谱数据经标准正态变换后,采用CARS-PLSR算法可有效提高有效磷含量预测的鲁棒性。该结果可为高光谱数据快速反演土壤有效磷含量提供理论依据。
关键词:  土壤有效磷  高光谱  竞争性自适应重加权算法  连续投影算法  偏最小二乘回归法
DOI:10.12105/j.issn.1672-0423.20230105
分类号:
基金项目:国家重点研发计划项目中国和蒙古国政府间国际科技创新合作重点专项“智慧农牧关键技术集成与中蒙协同创新示范园研究”(2021YFE0102000);北京大学中央高校基本科研业务费“地球观测与导航教育部工程研究中心——智能航行器侦测与信息服务系统”(7100604290)
Prediction of soil available phosphorous using hyperspectral data based on CARS-PLSR
Guo Peng1,2, Zhao Yang1,2, Sun Zihao1,2, Chen Xiuwan1,2
1.Institute of Remote Sensing and Geographic Information System,Peking University,Beijing 100871,China;2.Ministry of Education of PRC,Engineering Research Center of Ministry of Earth Observation and Navigation(CEON),Peking University,Beijing 100871,China
Abstract:
【Purpose】 To remove a large amount of redundancy and invalid information in soil hyperspectrum,select the sensitive wavelengths of soil available phosphorus (SAP),simplify the SAP hyperspectral estimation model and improve the prediction accuracy of the models.【Method】 A total of 110 soil samples were collected from Xihe basin in Sichuan province. The raw hyperspectral reflectance of soil samples in the range of 350~2 500 nm wavelengths were measured by the standard procedure with a spectrometer of ASD Field Spec3 equipped with a high intensity contact probe under the laboratory conditions. Based on the pre-processing spectra,the optimized wavelength variables were selected by using the successive projections algorithm(SPA)and competitive adaptive reweighted sampling algorithm(CARS). Final model with partial least square regression(PLSR)were established.【Result】 The results showed that SNV was the best soil spectral data pre-processing method of SAP. Based on the pre-processing spectral data by SNV,the CARS and SPA selected 54 and 13 key wavelength variables from full-spectrum to predict SAP concentrations,respectively. Compared with the SPA-PLSR model,the correlation coefficient of the CARS-PLSR model increased from 0. 894 to 0. 945,and the root mean square error reduced from 5. 73 to 3. 56.【Conclusion】 The utilization of CARS-PLSR algorithm based on soil hyperspectral data that is pre-processed by SNV could enhance SAP forecasting capability and reduce the model complexity,which could provide theoretical basis for the rapid inversion of SAP concentration by using hyperspectral data.
Key words:  soil available phosphorous(SAP)  hyperspectral  competitive adaptive reweighted sampling algorithm(CARS)  successive projections algorithm(SPA)  partial least square regression(PLSR)