本文已被:浏览 1020次 下载 984次 |
码上扫一扫! |
|
集成时间序列Sentinel-1/2数据的江汉平原油菜早期制图 |
王甜1,2,3,李中元1,2,3,王明星1,2,3,付煜1,2,3,焦阳1,2,3
|
1.湖北大学资源环境学院,武汉 430062;2.区域开发与环境响应湖北省重点实验室,武汉 430062;3.湖北省农业遥感应用工程技术研究中心,武汉 430062
|
|
摘要: |
【目的】 江汉平原是湖北省主要的农作物生产基地,油菜早期阶段的准确定位对于作物生长监测和作物产量预测至关重要。【方法】 文章借助谷歌地球引擎(Google Earth Engine,GEE)云平台,通过结合物候信息的随机森林模型(Random Forest,RF),以10 d为间隔,基于2022年10月1日至2023年4月30日的遥感影像,分别组成不同的生育区间组合,观察对比10 d间隔的各生育区间组合的精度变化情况,寻找油菜的最早可识别时间(Earliest Identifiable Timing,EIT),并制作江汉平原油菜早期识别图。【结果】 (1)雷达影像的VV、VH极化特征加入更有利于油菜的识别;与仅使用光学遥感数据的研究相比,利用雷达数据的极化特征增加了数据的多样性和丰富性。(2)基于Sentinel-1/2数据利用RF分类器获得的油菜早期识别最佳时段具体是2022年12月1—11日,总体精度达到0.88,F1得分为0.88,即可在油菜收获前5个月进行识别提取。(3)该文提出的方法可实现油菜大范围早期提取和快速制图。【结论】 基于Sentinel-1与Sentinel-2集成的时间序列数据最早可在油菜收获前5个月进行识别,综合利用Sentinel-1和Sentinel-2数据在获取最早可识别时段和早期作物制图方面具有良好的效果,该研究可为该地区油菜生产管理、农业种植结构调整和粮油安全保障提供数据支撑和科学服务。 |
关键词: 江汉平原 农业遥感 早期识别 油菜 |
DOI:10.12105/j.issn.1672-0423.20240302 |
分类号: |
基金项目:国家重点研发计划“农情信息空天地一体化高效智能感知研究”(2022YFD2001102);自然资源部地理国情监测重点实验室开放基金资助课题“协同时序Sentinel-1/2数据和物候特征的莲藕早期制图方法研究”(2024NGCM03) |
|
Early mapping of canola in Jianghan Plain by integrating time series Sentinel-1/2 data |
Wang Tian1,2,3, Li Zhongyuan1,2,3, Wang Mingxing1,2,3, Fu Yu1,2,3, Jiao Yang1,2,3
|
1.Faculty of Resources and Environment Science,Hubei University,Wuhan 430062,Hubei,China;2.Hubei Key Laboratory of Regional Development and Environmental Response,Wuhan 430062,Hubei,China;3.Hubei Engineering Research Center for Remote Sensing Technology in Agriculture,Wuhan 430062,Hubei,China
|
Abstract: |
Purpose Jianghan Plain is the main crop production base in Hubei Province,and the accurate positioning of canola in the early stage is very important for crop growth monitoring and crop yield prediction.Method In this paper,with the help of Google Earth Engine(GEE)cloud platform,through the Random Forest(RF)model combined with phenological information,based on the remote sensing images from 1 October 2022 to 30 April 2023,the 10-day interval was used to form different fertility interval combinations,and the accuracy changes of each fertility interval combination with 10-day interval were observed and compared to find the Earliest Identifiable Timing(EIT)of canola. The early identification map of canola in Jianghan Plain was made.Result (1)The addition of VV and VH polarization characteristics of radar images was more conducive to the identification of canola;compared with the research using only optical remote sensing data,the polarization characteristics of radar data increased the diversity and richness of data. (2)Based on Sentinel-1/2 data,the best period for early identification of canola obtained by RF classifier was from 1 to 11 December 2022,with an overall accuracy of 0. 88 and an F1 score of 0. 88,which can be identified and extracted five months before canola harvest. (3)The method proposed in this paper could realize large-scale early extraction and rapid mapping of canola.Conclusion The earliest identification time of canola based on the time series data integrated by Sentinel-1 and Sentinel-2 is five months before harvest. The comprehensive utilization of Sentinel-1 and Sentinel-2 data has a good effect in obtaining the earliest identification time and early crop mapping. This study can provide data support and scientific services for canola production management,agricultural planting structure adjustment and grain and oil security in the region. |
Key words: Jianghan Plain agricultural remote sensing early identification canola |