• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:廖 娟,周忠发,王 昆,黄智灵,陈 全.基于SAR提高喀斯特地区LUCC光谱分类精度研究[J].中国农业资源与区划,2016,37(1):50~56
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1168次   下载 676 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SAR提高喀斯特地区LUCC光谱分类精度研究
廖 娟1, 周忠发1,2, 王 昆1, 黄智灵1, 陈 全1
1.贵州师范大学喀斯特研究院,贵阳 550001;2.贵州省遥感中心,贵阳 550001
摘要:
喀斯特地区复杂地表形态导致地面调查可深入性差、精度不高,遥感则作为该区有效监测与研究 人类活动对土地利用(LUCC)方式与利用程度影响的主要手段。文章利用ALOS多光谱数据与TerraSAR- X的数据进行融合,讨论了HH极化微波后向散射数据用于改善多光谱遥感数据LUCC分类的精度,并比 较了不同融合方法对地物识别。结果表明: 2种数据之间的融合充分利用了多光谱的光谱信息与HH极化数 据丰富的结构与纹理的特征,增强了不同地物之间的光谱差异,提高地物可分性; PC法融合、IHS法融合 分类精度较单独使用ALOS多光谱数据分类精度分别提高了8%与13%,而且由于HH极化对植被含水量 的敏感性,提高了“插花”分布的旱地与草地、林地等由植被覆盖的土地利用类型的区分精度。通过该研 究探讨了HH极化数据与多光谱数据融合在地表信息提取中的应用,拓展了遥感数据在喀斯特地区土地利 用领域应用的范围。
关键词:  SAR ALOS 融合 LUCC 分类精度
DOI:
分类号:
基金项目:受贵州师范大学研究生创新基金资助(研创2014(17));国家重点基础研究发展计划课题“人为干预下喀斯特山地石漠化 的演变机制与调控”(2012CB723202);贵州省科技计划课题“岩土类型格局”(黔科合JZ字[2014]200201);贵州省软科学研究项目 “国家重点生态功能区生态文明建设与科技支撑研究———以贵州为例”(黔科合R字[2014]2012号)
IMPROVING KARST REGION LUCC SOECTRA CLASSIFICATION ACCURACY BASED ON SAR
Liao Juan1, Zhou Zhongfa1,2, Wang Kun1, Huang Zhiling1, Chen Quan1
1.Institute of Karst,Guizhou Normal University,Guiyang 550001,China;2.The Remote Sensing Center of Guizhou Province,Guiyang 550001,China
Abstract:
The surface morphology of Karst area is complex which causes difficult ground land investigation and low accuracy of investigation.Remote sensing is used as the main means of effective monitoring and studying human ac- tivity which impacts land use pattern and utilization degree. Combining ALOS multi spectral data with TerraSAR_X polarization data, this paper discussed how the HH polarized microwave backscatter data was used to improve LUCC classification accuracy of the multi spectral remote sensing data.And then it compared the different fusion methods which were more suitable for every object to distinguish ground object.The results showed that: the combination with the two kinds of data could make full use of the characteristics of the spectral information of multi spectral da- ta, as well as the rich texture and structure information of HH polarization data, enhance the spectral differences a- mong different objects,and improve the distinguishable of ground features.Compared to the method of separately u- sing spectral data,the classification accuracy using the PC method and IHS method improved 8, 13 percentage, re- spectively.And the HH polarization improved the distinguish accuracy of”flower” distribution of dry land, grass- land, and woodland,because of the sensitivity of vegetation water content of HH.This research expanded the scope of application of remote sensing data in the field of land and resources and has the value of popularization.
Key words:  SAR  ALOS  fusion  LAUCC  classification accuracy
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号