引用本文: | 裴玮,雷秋良,李影,赵营,刘晓彤,田林锋,左正艳,马永刚,杜新忠,邹朋,刘宏斌.2014—2019年青铜峡灌区入黄干沟水质时空分布及污染源解析[J].中国农业资源与区划,2024,45(3):36~48 |
| |
|
|
|
本文已被:浏览 389次 下载 202次 |
码上扫一扫! |
|
2014—2019年青铜峡灌区入黄干沟水质时空分布及污染源解析 |
裴玮1,2,3,雷秋良1,2,3,李影4,5,赵营6,刘晓彤6,田林锋7,左正艳7,马永刚8,杜新忠1,2,3,邹朋9,刘宏斌1,2,3,9
|
1.北方干旱半干旱耕地高效利用全国重点实验室,北京 100081;2.中国农业科学院农业资源与农业区划研究所,北京 100081;3.农业农村部面源污染控制重点实验室,北京 100081;4.中国科学院地理科学与资源研究所,北京 100101;5.资源与环境信息系统国家重点实验室,北京 100101;6.宁夏农林科学院农业资源与环境研究所,银川 750002;7.宁夏回族自治区生态环境监测中心,银川 750002;8.宁夏回族自治区水文水资源监测预警中心,银川 750011;9.菏泽金正大生态工程有限公司,山东菏泽 274000
|
|
摘要: |
目的 为了解黄河中上游青铜峡灌区入黄干沟水质时空变化特征,揭示典型污染物来源及空间分布。方法 文章针对2014—2019年灌区12条入黄干沟水体中总磷(TP)、氨氮(NH3-N)、化学需氧量(COD)与高锰酸盐指数(CODMn)浓度的时空变化规律进行探究,并采用输出系数法揭示灌区污染物来源。结果 (1)时间尺度上,研究期间入黄干沟整体水质为Ⅳ至劣V类,氨氮和总磷浓度超标严重,受灌溉影响,污染物浓度在非灌溉期高于灌溉期;(2)空间分布上,12条干沟的污染物浓度沿黄河水流方向呈现出先降低后升高再降低的趋势,银古公路桥附近的银新干沟、中干沟、永二干沟污染较为严重(劣V类);(3)污染物来源上,灌区总磷入河负荷主要来自面源污染(占比86.7%),集中在青铜峡市、贺兰县与平罗县,氨氮入河负荷主要来自点源污染(占比66.8%),COD入河负荷点源和面源分别占比48.1%和51.9%,集中在银川市区和利通区。结论 青铜峡灌区入黄干沟治理应重点关注银新干沟、中干沟和永二干沟,严格控制冬季点源排放是灌区干沟水质提升的关键,种植源污染防控优先考虑青铜峡市、贺兰与平罗县,畜禽养殖源污染防控优先考虑利通区,城镇生活源污染防控优先考虑银川市区。 |
关键词: 水质 输出系数法 时空分布 污染源解析 青铜峡灌区 |
DOI:10.7621/cjarrp.1005-9121.20240304 |
分类号:X52 |
基金项目:区域创新发展联合基金项目“宁夏灌区典型农田氮磷迁移规律及其地表水水质响应机理研究”(U20A20114);国家自然科学基金项目“流域磷流失动态关键源区与降雨事件的响应机制”(42107076);泰山产业领军人才工程项目“农田氮磷淋去阻控技术产品研发与应用”(LJNY202125) |
|
SPATIOTEMPORAL DISTRIBUTIONS OF WATER QUALITY OF DRAINAGE DITCHES AND ITS POLLUTION SOURCE ANALYSIS FROM 2014 TO 2019 IN QINGTONGXIA IRRIGATION DISTRICT |
Pei Wei1,2,3, Lei Qiuliang1,2,3, Li Ying4,5, Zhao Ying6, Liu Xiaotong6, Tian Linfeng7, Zuo Zhengyan7, Ma Yonggang8, Du Xinzhong1,2,3, Zou Peng9, Liu Hongbin1,2,3,9
|
1.State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081, China;2.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;3.Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;4.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,Beijing 100101, China;5.State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China;6.Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;7.Ecological Environment Monitoring Center of Ningxia Hui Autonomous Region, Yinchuan 750002, China;8.Ningxia Hui Autonomous Region Hydrology and Water Resources Monitoring and Early Warning Center, Yinchuan 750011, China;9.Heze Kingenta Ecological Engineering Co., Ltd, Heze 274000, Shandong, China
|
Abstract: |
To understand the spatiotemporal variation characteristics of water quality of the main drainage ditches in the Qingtongxia Irrigation district in the middle and upper reaches of the Yellow River, and reveal the pollution sources and spatial distribution of typical pollutants. The spatiotemporal distributions of total phosphorus (TP), ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and permanganate index (CODMn) concentrations in the 12 main drainage ditch of irrigation district from 2014 to 2019 were explored. The pollution sources and its spatial distribution in the region of drainage ditches were revealed by the output coefficient method. The results were showed as follows. (1) The overall water quality of the drainage ditches in the irrigation district was the surface water quality grade Ⅳ standard and some even worse than the grade Ⅴ during study period. The concentrations of ammonia nitrogen and total phosphorus exceeded the standard seriously. The concentration of pollutants in the non-irrigation period was significantly higher than the irrigation period. (2) On the spatial scale, the water quality of drainage ditch along the direction of the Yellow River first decreased, then increased and then decreased. The water quality of Yinxin ditch, Zhong ditch and Yonger ditch near Yingu Bridge was worse than the grade Ⅴ standard. (3) On the source of pollutants, the total phosphorus load into the river in the study area mainly came from non-point source pollution (86.7%) and concentrated in Qingtongxia, Helan county and Pingluo county, while the ammonia nitrogen load mainly came from point source pollution (66.8%). COD load into the river was concentrated in Yinchuan city and Litong district and from point source and non-point source accounting for 48.1% and 51.9%, respectively. Therefore, the study area should focus on Yinxin ditch, Zhong ditch and Yonger ditch in drainage ditch control. Strictly controlling of point source discharge in winter is the key to improving the water quality of main ditches in irrigation areas. Qingtongxia, Helan and Pingluo cities are given priority in the planting source pollution prevention and control, while Litong district is given priority in the livestock and poultry breeding source pollution prevention and control. Yinchuan city is given priority in the urban living source pollution prevention and control. |
Key words: water quality export coefficient method spatiotemporal distribution pollution source analysis Qingtongxia irrigation district |
|
|
|
|
|
|