• 首页 | 主办单位 | 期刊简介 | 编委会 | 作者指南 | 刊物订阅 | 下载中心 | 联系我们 | English | 期刊界
引用本文:张玲玲,王玉峰,陈睿.后疫情下生猪价格波动对养殖场户相机生产决策的影响研究[J].中国农业资源与区划,2025,46(1):98~111
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 12次   下载 10 本文二维码信息
码上扫一扫!
分享到: 微信 更多
后疫情下生猪价格波动对养殖场户相机生产决策的影响研究
张玲玲1,王玉峰2,陈睿1
1.四川农业大学经济学院,成都 611130;2.四川农业大学管理学院,成都 611130
摘要:
目的 掌握非洲猪瘟疫情后期养殖场户权衡“风险冲击”与“价格诱惑”的相机生产决策反应,对未来应对同类“黑天鹅”事件爆发,实现我国生猪产能快速恢复、产业健康可持续发展具有重要意义。方法 文章基于四川省610家养殖场户的实地调研数据,采用广义有序Logit模型、中介效应模型等对非洲猪瘟疫情后期养殖场户的相机生产决策进行了实证检验。结果 (1)整体而言,非洲猪瘟后期的生猪价格波动会促使养殖场户缩减饲养规模,而生猪平均价格的提高会促进养殖场户扩大饲养规模。分期而言,2020—2021年的价格高位期和骤降期,养殖场户仍会做出价格倾向的“增产”和“减产”投机行为,但价格高位期养殖场户的倾价性“增产”行为会随着价格上涨而减少;(2)后疫情时代,养殖场户的生产决策与传统价格涨跌的不对称性影响相左,价格上涨时选择扩大饲养规模的概率高于价格下跌时选择缩小饲养规模的概率;(3)边际效应分析发现养殖规模化、购买养殖保险有助于促进养殖场户的“反价格倾向”生产行为;(4)养殖场户的组织化程度有助于降低价格波动对其生产决策的影响;(5)作用机制检验发现价格预期是价格波动影响养殖场户相机生产决策的重要机制。结论 应强化产能恢复政策的适配性,加速生猪养殖规模化进程,完善突发疫病事件保险防范体系,创建产业信息共享平台,建立生猪监测预警机制。
关键词:  非洲猪瘟  后疫情时代  生猪养殖场户  生猪价格波动  相机生产决策
DOI:10.7621/cjarrp.1005-9121.20250109
分类号:F326.3
基金项目:国家社会科学基金项目“生猪产业链融资机制及风险治理研究”(21XGL007);四川省软科学计划项目“川猪产业高质量发展中的市场风险与分担机制研究——基于生猪期货+保险视角”(2021JDR0248)
THE INFLUENCE OF HOG PRICE FLUCTUATION ON FARMERS' CORRESPONDING PRODUCTION DECISIONS UNDER THE POST-EPIDEMIC SITUATION
Zhang Lingling1, Wang Yufeng2, Chen Rui1
1.College of Economics, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;2.School of Management, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
Abstract:
This study seeks to assess the effect of hog price fluctuation on the farmers production decision. Mastering the production decision response of farmers to weighing the "risk impact" and "price temptation" in the later stage of the African swine fever epidemic is of great significance in dealing with similar outbreak of "black swan" in the future in China, hence realizing the rapid recovery of China's pig production, the healthy capacity and sustainable development of the industry. Based on the data from a field survey of 610 farmers in Sichuan province, the generalized ordered logit model and the intermediary effect model was used to empirically test the production decision made by farmers in the later stages of the African swine flu. The results showed that: (1) Price fluctuation of hog in the later stage of African swine fever would influence farmers to reduce their scale of raising, while increase in average hog price would influence farmers to expand their scale of raising. In terms of stages, the price of live pigs had witnessed a long period of price instability (raising and falling) during 2020-2021 production season. Farmers would still make speculative behaviors of increasing production when the price was high and reducing production when the price was low. However, the farmers' behavior of increasing production would decrease with increasing price during high price period. (2) In the post-epidemic era, farmers' production decisions were different from the asymmetric effects of traditional price fluctuations, and the probability of choosing to expand the feeding scale when the price rises was higher than that of reducing the feeding scale when the price fell; (3) The marginal effect analysis found that farming scale and purchase of farming insurance promoted the production behavior of farmers' "anti-price bias"; (4) Finally, the test of action mechanism found that price expectation was an important mechanism for price fluctuations to affect farmers' production decisions. In view of this, it is necessary to strengthen the adaptability of the government's production capacity recovery policy, accelerate the process of large-scale pig breeding, improve the insurance prevention system for emergency disease events, create an industry information sharing platform, and build a pig monitoring and early warning mechanism.
Key words:  African swine fever  post-epidemic era  hog farmers  hog price fluctuation  corresponding production decision
版权所有:  您是本站第    位访问者
主管单位:中华人民共和国农业农村部 主办单位:中国农业科学院农业资源与农业区划研究所
中国农业绿色发展研究会 地址:北京市海淀区中关村南大街12号
电话:010-82109628、82109647 电子邮件:quhuabjb@caas.cn
技术支持:北京勤云科技发展有限公司  京ICP备11039015号